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Abstract. It is well known that extrema of classical, one-dimensional systems can be viewed
as trajectories of a nonlinear, volume-preserving map. However, in general, thermodynamically
stable extrema (i.e., local minima) of the free energy are numerically unstable trajectories of the
map and so difficult to study by this technique. Here we explore a recent idea involving the use
of a dissipativemap to study the same kind of problem. Such a map may be designed so that
its attractors are equal to, or close to, local minima of the energy. We apply such a dissipative
map to the mean-field ANNNI model. We find that the technique reliably locates many kinds of
metastable state: ferromagnetic, paramagnetic, commensurate, and incommensurate. However,
the map also has two notable failings: it (apparently) has no chaotic attractors; and it fails
to find correctly metastable states in a region of the phase diagram which is dominated by
incommensurate states.

1. Introduction

Frustrated systems are of interest due to the rich variety of stable and metastable structures
to which they give rise. One-dimensional frustrated systems are particularly well-studied.
One idea that has been much used for 1D systems [1–6] is to write theN equations (N
being the length of the chain) for extremizing the free energyF({Mi}) (a function of the
‘spins’ Mi) as an iterated nonlinear mapMv. Here the subscriptv reminds us [7] that
such a map is volume-preserving. Two other features of the mapMv are worth noting.
One is that, for interactions of (integer) ranger, Mv is 2r-dimensional. Another is that
the numerical or mapping stability of trajectories ofMv is anticorrelated [1, 2, 5] with
the thermodynamicstability of the corresponding extrema. That is, trajectories which are
readily accessible numerically are, almost always, physically unstable.

This problem can be avoided, at least in part, by (i) avoiding reliance on numerical
trajectories, i.e., proving properties [1, 2, 4, 5] of the global or local minima of the energies
as trajectories (albeit unstable) ofMv; (ii) working with finite chains [6], so that boundary
conditions allow the unique determination of the trajectory; or (iii) other means, such
as determining, as narrowly as possible, numerical bounds [1, 2] for the location of the
(numerically) unstable orbits of interest. All of these techniques are least useful for the
disorderedmetastable states of the 1D problem, represented by chaotic trajectories of the
map. There are generally good physical reasons to expect such metastable states (e.g., as
irregular spacings of pinned solitons). However, the numerically stable trajectories of
the mapMv provide little detailed information about chaotic metastable states; and the
alternatives (i)–(iii) above are equally limited in their utility for such trajectories.

Recently, Watson and Canright [8] described a dissipative iterated mapMd which
they applied to pinned flux-line lattices in layered superconductors. This problem, given
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certain assumptions, maps to a highly frustrated one-dimensional chain with the interaction
range depending on a parameter. Watson and Canright found that, as the interaction range
reached around 5–10 lattice spacings, chaotic metastable states appeared at low energy, in
fact nearly competitive with the state of lowest known energy (which was periodic). These
states were readily studied, in detail, because they appeared (approximately) asattractors
of the dissipative mapMd—along with other metastable states.

The idea of Watson and Canright (i.e., of usingMd ) thus appears complementary to
the notion of applying a mapMv to study metastable states. The dissipative map possesses
attractors, which are, approximately or sometimes exactly,some of the metastable states
of the 1D problem. In contrast, the precise trajectories of the volume-preserving mapMv

include (besides all of the unstable extrema)all metastable states of the problem; but these
states can be difficult or impossible to extract numerically.

For these reasons, we believe that the idea of applying a dissipative iterated map to
frustrated 1D problems merits further study. We report here a study of the ANNNI model at
the level of mean-field theory, using a mapMd . The ANNNI model [9] has been intensely
studied, as it is one of the ‘prototype’ frustrated models, one which gives rise to a rich
variety (in fact, an infinity) of equilibrium phases, including ferromagnetic, commensurate,
incommensurate, and disordered (paramagnetic) phases. The mean-field ANNNI model has
been studied by Høgh Jensen and Bak [1] using a volume-preserving mapMv. This work
exploits the mapMv to reach specific conclusions about the ferromagnetic/paramagnetic
phase boundary, the incommensurate/commensurate transition, and soliton properties; it also
strongly suggests the existence of chaotic metastable states.

In the present work, we design a dissipative map for the same problem, and study
its attractors over the two-dimensional parameter space. We find that the resulting map
has a rich variety of attractors which, in most regions of the parameter space, represent
metastable (or stable) states of the mean-field ANNNI problem. These attractors include
ferromagnetic, paramagnetic, commensurate, and incommensurate states, including periodic
arrays of pinned solitons. In contrast to the results of Watson and Canright, however,
we find no chaotic attractors for our mapMd . We also find that, in a certain regime of
parameter space, the map commonly generates structures which are not metastable states of
the mean-field ANNNI problem.

Below, we describe our method (section 2) and results (section 3) in detail; the final
section (4) then offers our conclusions.

2. The dissipative map

The mean-field free energy of the ANNNI model [9] is (withkB = 1)

F = 1

2
T

∑
i

[(1 + Mi) ln(1 + Mi) + (1 − Mi) ln(1 − Mi)]

− 2J0

∑
i

M2
i − 1

2

∑
i

[J1Mi(Mi−1 + Mi+1) + J2Mi(Mi−2 + Mi+2)] (2.1)

wherei is a layer index,Mi is the mean-field magnetization of layeri (−1 6 Mi 6 1), T

is the temperature,J1 andJ2 are interlayer couplings, andJ0 is the intralayer interaction.
Extrema ofF satisfy the following infinite set of coupled equations:

∂F

∂Mi

= 0. (2.2)
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From equation (2.2) one can obtain a relation of the form

Mi+2 = VF (Mi+1, Mi, Mi−1, Mi−2). (2.3)

This relation, in turn, may be written as an iterated, four-dimensional map, which may be
shown to be volume-preserving [1].

In contrast to this four-dimensional map, we design a two-dimensional map as follows.
We define a function,G(Mi, Mi−1, Mi−2), resembling the free energyF of equation (2.1),
by

G(Mi, Mi−1, Mi−2) = 1

2
gT [(1 + Mi) ln(1 + Mi) + (1 − Mi) ln(1 − Mi)]

−g0M
2
i − g1MiMi−1 − g2MiMi−2 (2.4)

where gT , g0, g1 and g2 are as-yet undetermined parameters, to be related to those in
equation (2.1). Clearly,G is just the ‘local’ free energy ofMi , with the bonds to the right
rescaled to zero (and the remaining couplings also subject to a possible rescaling).G is
chosen to be completely asymmetric in this way, in order to facilitate the dynamical ‘growth’
of a chain from one end. That is, with the functionG, we can design the dissipative map
Md as an iterated minimization process, as follows. GivenMi−1 andMi−2, we chooseMi

to satisfy

G(Mi, Mi−1, Mi−2) = min
x

G(x, Mi−1, Mi−2). (2.5)

Iteration of equation (2.5) then gives atwo-dimensional mapMd , with which one can
‘grow’ a chain of arbitrary length.

The mapMd represented by equations (2.4) and (2.5) is a rather simple structure,
which, however, cannot be written explicitly in the formMi = VG(Mi−1, Mi−2) (which
would be analogous to equation (2.3)). It is therefore difficult in general to study such a
map by means other than numerical. We can however deduce thelinearized form of the
ANNNI map explicitly; this form will be useful in consideration of the stability of the map,
in terms of its Lyapunov exponents [10].

We write Md as(
Mi

Mi−1

)
= Md

(
Mi−1

Mi−2

)
=

(
implicit(Mi−1, Mi−2)

Mi−1

)
. (2.6)

Here the notation ‘implicit(Mi−1, Mi−2)’ is the rule specified by equations (2.5) and (2.4).
That is,Mi satisfies

0 = 1

2
gT ln

1 + Mi

1 − Mi

− 2g0Mi − g1Mi−1 − g2Mi−2. (2.7)

Given fixedgs, and fixedMi−1 andMi−2, this equation has either three solutions forMi , or
one. In the former case, there are two local minima ofG (viewed as a function of the single
variableMi), bracketing a local maximum; the job ofMd is then to choose the lower of
the two local minima. In the latter case the sole solution of (2.7) is a minimum. In either
case we need an implicit solution of equation (2.7).

Implicit differentiation of (2.7) gives the linearized map

DMd =
(

g1/d g2/d

1 0

)
(2.8)

whered ≡ [gT /(1 − M2
i )] − 2g0. The eigenvalues of the linearized map are then

λ1,2 =
g1 ±

√
g2

1 + 4dg2

2d
(2.9)
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and its determinant is

D ≡ Det(DMd) = λ1λ2 = −g2

d
. (2.10)

It is apparent that|D| may be greater than or less than one. Fixed-point attractors of the
map may be characterized by a single value for|D|, with λ1λ2 < 1, i.e., µ1 + µ2 =
ln(λ1) + ln(λ2) < 0, where theµi are the Lyapunov characteristic exponents. For more
complex attractors one can still define the Lyapunov exponents in terms of the long-time
average shrinking and stretching behaviour of small volumes of phase space [10].

The mapMd , defined above, may be viewed in two ways: as a dynamical system, with
possible relevance to the problem of pattern formation [11] in open systems; or as a tool for
the study of metastable states of the equilibrium problem represented by the free energyF .
In this work, we will concentrate on the latter view. In order to apply the mapMd to the
equilibrium problem, then, we need to relate attractors of the former to metastable states
of the latter. This in turn necessitates relating thegs of G to the Js (here we implicitly
includeT ) of F . In other words, given an attractor for a given set ofgs, we want to view
it as a likely metastable state ofF , for some set ofJs. The question is then, whichJs?

As shown by Watson and Canright, the most useful strategy is not necessarily to set the
gs equal to the correspondingJs (i.e.,gT = T , g1 = J1, etc). Instead, we assume thatF

has some ‘simple’ minima, and then attempt to designG (by constraining thegs in terms
of the Js) so that, in the same range ofJs where the simple minimum exists,G has an
attractor which is identical to that minimum.

Specifically, we take the ferromagnetic stateMi = constant= M as our simple,
reference minimum ofF . Whenever this state is metastable it will satisfy

dF({Mi} = M)

dM
= 1

2
T ln

1 + M

1 − M
− 4J0M − 2J1M − 2J2M = 0. (2.11)

Since our map involves repeated minimization, every spinMi satisfies (for any finite
gT )

∂G(x, Mi−1, Mi−2)

∂x

∣∣∣∣
x=Mi

= 0. (2.12)

(For gT = 0, the minimum ofG always occurs at one of the physical bounds±1 for the
spin variablesMi . Hence equation (2.12) does not apply for this case. But for any finite
value of gT , one can show that the minimum always occurs between the two bounds, so
equation (2.12) holds for eachMi .)

Now suppose that a ferromagnetic half-chain of spins (M` = M, ` 6 i−1) will produce,
under the mapMd , a new spinMi = M, i.e., suppose that the ferromagnetic configuration
is stable under the mapping. A necessary condition for this is that

dG

dMi

∣∣∣∣
{M`}=Mi=M

= 1

2
gT ln

1 + M

1 − M
− 2g0M − g1M − g2M = 0. (2.13)

Therefore, if we can enforce the equality of the right-hand sides of equations (2.11)
and (2.13), we have ensured that anecessarycondition for metastability of the ‘simple’
ferromagnetic state is equivalent to anecessarycondition for mapping stability of the same
state. That is, we have

(FM is metastable) H⇒ (2.11) ⇐⇒ (2.13) ⇐H (FM is mapping stable). (2.14)

Clearly this doesnot give (FM is metastable) ⇐⇒ (FM is mapping stable). However,
this logic does give us some guidance in determining thegs of the map in terms of theJs
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of the free energy—or, stated differently, guidance in choosingJs of the free energy from
the gs of the map—such that attractors of the map, with the givengs, should be close to
metastable states ofF with the chosenJs.

Equating (2.11) to (2.13) does not uniquely determine thegs from theJs. For most of
the present work, we took the obvious choice

T = gT 2J0 = g0 2J1 = g1 2J2 = g2. (2.15)

Given the above logic, however, we are not assured that attractors of the map are
metastable states ofF , with the correspondence given by equation (2.15). Therefore we
find it necessary to test the metastability of any ‘as-grown’ configuration (attractor of the
map), by relaxing it [8] to the nearest local minimum of the true free energyF . This last
step can only be performed for a finite chain (typically of length 200); a standard numerical
algorithm is used for this purpose. For the map to be most useful as a tool for studying
the equilibrium problem, we expect that this last minimization step should make only small
changes in the configuration given by the map. That is, in general, we ask that the attractors
of the map beclose tolocal minima ofF .

3. Attractors of the map

The ANNNI problem is determined by four parameters; using one of these for our unit
of energy leaves a three-dimensional parameter space. In line with the large majority of
previous work [9], we takeJ0 = J1 = 1 in the following; this gives a two-dimensional
phase diagram, which we view in the usual way in terms of the two coordinates(κ, T /J0).
Hereκ = −J2/J1, and we takeJ2 < 0, J1 > 0, hence studying only positiveκ.

We first discuss some simple limiting cases. Atκ = 0 the model is unfrustrated, with a
continuous transition from ferromagnetic (FM) to paramagnetic (PM) atT/J0 = 6. We find
that the attractors of the map reproduce this line in the phase diagram perfectly. This is not
surprising, since the map is designed, as much as possible, to give ferromagnetic minima of
F as attractors—and, in mean-field theory, a paramagnetic chain is simply a ferromagnetic
chain withM = constant= 0.

For finite κ, 0 < κ < 1/4, the attractors of the map also reproduce perfectly the
equilibrium phase diagram, including the correct values forM(κ, T /J0), and hence also the
correct critical behaviour ofM (∝ (Tc − T )1/2) near the transition. We also find adynamic
critical behaviour atTc, in that the largest Lyapunov exponent [10]µmax at the fixed point
goes to zero from below atTc (or, more precisely, atgc = (gT )c = 2g0 + g1 + g2—
which is the largestgT for which equation (2.13) has a nonzero solution). In fact, since
we can extract the small-M behaviour of the fixed point analytically from (2.13), we get
that µmax = −C±|gc − gT |, i.e., a linear vanishing of the Lyapunov exponent atgc (with
slopeC± depending on the sign ofgc − gT ). We have verified this behaviour with simple
numerical estimates of the largest Lyapunov exponent, near the FM and PM fixed points.

We next consider the lineT = 0. Along this line, the equilibrium ANNNI problem
shows a phase transition from the ferromagnet to a commensurate structure of period four
(commonly termed〈2〉 since it consists of spins of the form. . . + + − − + + − − . . .),
at κ = 1/2. It is easily shown however that the FM ismetastable(i.e., remains a local
minimum ofF ) for anyκ < 1+2J0/J1—that is, out toκ = 3, given the common convention
J1 = J0 = 1. It is also easy to show that the FM attractor loses stability under the iterated
mapping atκ = 1 [12]. Hence we find that the mapMd , which we have ‘trained’ to find
metastable FM states, does not have a FM attractor everywhere where there is a metastable
FM state; nor does it always find the global minimum ofF , even atT = 0. Instead, below
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κ = 1, the map gives the (correctly) the metastable FM phase, while forκ > 1, the 〈2〉
configuration is both the attractor of the map, and the stable ground state.

It is implicit in the above that the map possesses a single attractor for the cases discussed.
In fact, we find—as far as we can ascertain by numerical experiments—that the map
Md corresponding to the ANNNI problem possesses either a single attractor, or a pair
of attractors related by spin inversion, for almost every choice [13] of(gT /g0, g2/g1). This
is in contrast to the results of Watson and Canright [8], and may be related to the lower
dimensionality of the map in the present work (in that the number oflocal minima of our
fictitious energyG is severely limited). With this simplifying feature, we can present a
‘phase diagram’ of attractors for the map.

Figure 1. An attractor ‘phase diagram’ of the dissipative map. The coordinates of the ‘phase
diagram’ are expressed in terms of the couplings of the ANNNI free energy. A variety of
complex attractors are found over the parameter space; these attractors are then crudely (and
approximately) sorted into the various categories of structure shown in the figure. Such structures
are not necessarily periodic. Over most of the figure, the attractors of the map are close to, or
equal to, local or global minima of the free energy. The exceptions are mainly found in the
region between the paramagnetic phase and the thin solid line.

To obtain a crude sense of the attractor phase diagram, we scanned the rectangle 06
gT /g0 6 4.25, 0 6 −g2/g1 6 2—corresponding, via equation (2.15), to 06 T/J0 6 8.5
and 06 κ 6 2, as shown in figure 1. We then asked the computer to recognize a set of
simple patterns [14] (as shown in the figure), based on the last 200 spins of an as-grown
chain of 1000 spins. We emphasize that the patterns ‘recognized’ by the computer are not
necessarily periodic; they simply obey the indicated sequence of sign changes over the 200
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spins tested.
Remarkably, we find that the mapMd , designed to closely mimic the equilibrium

structures when they are ‘simple’, reproduces, qualitatively but in considerable detail, the
phase diagram of the ANNNI problem. The shift of the multiphase point by a factor of
two, described above, carries through to a rescaling of the entire phase diagram, along
theκ-axis, by the same factor. Otherwise, the map’s ‘phase diagram’ reproduces numerous
detailed features of the ANNNI phase diagram: besides the above-mentioned ferromagnetic,
paramagnetic, and〈2〉 phases, there are other commensurate and incommensurate structures
of various types.

Figure 2. The commensurate structure at(κ, T /J0) = (1.0, 4.0). (a) The ‘as-grown’ attractor
〈3〉 of the map. (b) Comparison of the attractor (©) with the nearest local minimum of the free
energy (4), found by numerical relaxation.

Figure 2 shows a commensurate〈3〉 structure at(κ, T /J0) = (1.0, 4.0). (Here and
henceforth we always give parameters asJs, rather thangs, with the correspondence given
by (2.15) implicit.) As noted in the previous section, after growing a chain, we discarded
a few hundred layers from the chain and then relaxed the remaining finite configuration to
the nearest local minimum ofF . Figure 2(a) shows the as-grown chain, while 2(b) shows
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superimposed both the as-grown and the relaxed chains. It is clear that our expectation that
the attractor should be close to a metastable state ofF is well met in this case, as it was
for the simpler FM,〈2〉, and paramagnetic structures. Comparing the two mapsMv and
Md , we see that a period-six cyclic (unstable) trajectory of the former is closely matched
by a period-sixattractor of the latter.

Figure 3. The unpinned incommensurate configuration at(1.2, 5.2). (a) The attractor. (b)
Comparison of the attractor (©) and the free-energy minimum (4)

An incommensurate structure at(1.2, 5.2) is shown in figure 3. Again we show the
as-grown chain in figure 3(a) and compare the as-grown and relaxed chains in figure 3(b);
and, again, the two are remarkably close. In particular, they have the same dominant
wave vector. (Note that, even though this structure is incommensurate, it appears as a
‘periodic’ structure〈3332〉 in our crude recognition procedure.) The close similarity seen
in figure 3(b) means, again, that the two mapsMv andMd have virtually identical closed,
one-dimensional trajectories—one unstable, and one attracting.

We have observed the transition from the〈2〉 ‘phase’ (attractor) at this sameκ (=1.2),
and lowerT . We find that, atT/J0 = 2gT /g0 = TCC ≈ 2.803 2806, the〈2〉 attractor
loses stability to a〈2k3〉 attractor (with k diverging at the transition). We thus find a
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Figure 4. The intersoliton spacing, for solitons in a〈2〉 background, as a function of temperature
T/J0, at fixedκ = 1.2. The spacing diverges at a temperatureTCC ≈ 2.803 2806; belowTCC

the solitons vanish, and the attractor is the simple〈2〉 structure. The displayed periodicities
correspond to a〈2k3〉 structure for every integerk in the range 26 k 6 20; we also found a
‘k = 2.5’ attractor, that is, a〈233223〉 structure, in the step (vertical to the eye) between the
〈233〉 and 〈223〉 attractors. We conjecture that the other steps shown may also be resolved into
smaller steps, if viewed with finer resolution.

commensurate–commensurate transition, with the period of the attractor jumping from 4 to
∞ at TCC . For T & TCC , k is finite (figure 4), and the attractor is simply the〈2〉 structure
punctuated by a periodic array of solitons. In this range ofT the solitons are pinned to the
underlying lattice, sok is always an integer, and there are no incommensurate attractors.
Incommensurate structures then occur at higherT , as the soliton density reaches a point
at which intersoliton interactions depin them from the lattice. This picture is in qualitative
agreement with that found by Høgh Jensen and Bak [1] for the equilibrium structures of the
ANNNI problem: they found that, forκ sufficiently small (but above 0.5), the transition
from the〈2〉 phase is to a pinned (commensurate) soliton lattice.

We also find some interesting differences from the equilibrium transition. For one
thing, the〈2〉 attractor is asymmetric; that is, it takes the form(a, a′, −a, −a′), while the
equilibrium 〈2〉 phase ofF is of the symmetric form(a, a,−a, −a). This asymmetry is
very small at lowT but becomes pronounced near the transition.

For the equilibrium ANNNI problem, at higherκ one expects [1] the effects of
pinning to weaken, such that the transition from the〈2〉 phase is eventually directly
into an incommensurate phase of unpinned (but still widely spaced) solitons. We have
found a similar behaviour at higherκ—that is, a direct transition, atT = TCI , from the
commensurate〈2〉 attractor to an incommensurate attractor characterized by widely spaced
solitons. Just aboveTCI the attractor changes from period-four to a limit cycle. The
orbit hence changes from four points at the corners of a rhombus to a one-dimensional
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Figure 5. An orbit diagram of the attractor, just above the commensurate/incommensurate
transition. Here we plot 20 000 points grown at(4.0, 7.7390). At this temperature the solitons
are approximately 808 lattice spacings apart. This number is not exact because the solitons are
incommensurate with the lattice; hence in the limit of an infinite chain, we expect the orbit to
fill a one-dimensional curve.

(rhomboidal) curve, as shown in figure 5. In terms of the spin chain, there is an introduction
of a soliton lattice forT > TCI . In figure 6, we show one such soliton, grown near the
commensurate/incommensurate transition at (4.0, 7.738 46). The spacing of these solitons,
for T > TCI is, as far as we can resolve numerically, perfectly periodic. The structure is
still incommensurate since the period is not fixed to integer values, instead varying smoothly
with T . More quantitatively, we find that the periodp of the solitons varies as(T −TCI )

−1/2.
There is a corresponding dynamical critical behaviour, as seen in the largest Lyapunov

exponentµmax . This quantity is of course negative for the stable〈2〉 attractor, and
is (presumably) zero for the incommensurate soliton lattice aboveTCI . Our numerical
estimates ofµmax give µmax ∝ (TCI − T )1/2 on the low-T side of the transition. On the
incommensurate side, it is difficult to obtain an accurate estimate forµmax , since itslocal
value varies widely along the attractor (positive in the solitons, negative in the flat〈2〉
domains); however, our numerical estimates are consistent with zero, and hence with our
belief that the incommensurate attractor has a one-dimensional orbit.

With increasing soliton density at higherT , the solitons begin to interact, giving a
‘smoother’ and more obviously incommensurate spin chain. At even higher density, the
intersoliton interactions, combined with the soliton pinning energy, induce a transition to a
high-period commensurate structure.

This sequence of transitions is very similar to that seen in the equilibrium ANNNI
problem. It is also worth noting the differences. First, the solitons of the attractor are
asymmetric; not surprisingly, when we relax such as-grown structures (figure 6(b)), the
resulting soliton remains metastable, but is left–right symmetric (that is, symmetric with
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Figure 6. The soliton lattice at(4.0, 7.738 46). (a) Here we show only a piece of the attractor,
in which the solitons are regularly spaced (spacing∼ 3051). (b) The relaxation of a small part
of the as-grown chain, which includes the soliton (©: as grown,4: relaxed).

respect to spatial inversion). We note further that a regime of widely spaced (hence
noninteracting) butperiodic solitons was not found by Høgh Jensen and Bak [1], using
the area-preserving mapMv. They noted that, in such a regime (pinning� intersoliton
repulsion), there should be a large number of nearly degenerate, metastable structures with
irregular soliton spacing; hence they termed this regime ‘chaotic’. Our mappingMd

however does not yield chaotic attractors in this regime. Instead, it picks out the single
regular metastable structure in this huge, nearly degenerate set. There is no doubt that the
periodic soliton lattice is also truly metastable; and it is plausibly the lowest- (free-) energy
structure at the given soliton density. However, we agree with Høgh Jensen and Bak that,
given the use of mean-field theory, and the tiny energy differences involved, it is physically
reasonable to expect glassy rather than ordered behaviour in this regime.

In this sense figure 6 is both impressive and disappointing. It is remarkable that the
simple mapMd , designed to find ferromagnetic metastable states, has such a delicate
structure as that of figure 6(a) as an attractor, and further that this attractor is very close
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to a metastable minimum of the free energyF . Yet, since one of the principal reasons for
interest inMd was its promise for revealing chaotic (glassy) metastable structures, we find
its failure to do so disappointing.

Of course, it is possible thatMd for the ANNNI problem has chaotic attractors which
we failed to find. We can only say that we found none, in our crude search procedure
(at parameter intervals 0.02 in each direction) represented by figure 1, and in a few high-
resolution scans (such as that leading to figure 6(a)). Given our strong evidence that this
simple two-dimensional map has, in almost all cases, a single attractor (or a pair of attractors
related by spin inversion) for each parameter set, and given our failure to find any chaotic
attractors, we conjecture that there are none for this map.

Figure 7. Two kinds of chaotic structure. (a) ‘Strong’ chaotic structure, found by relaxation
from an incommensurate attractor at(0.75, 4.7). (b) A phase portrait of the chaotic spin chain
of (a). (c) ‘Weak’ chaotic structure, found by relaxation at(0.21, 5.4) from a paramagnetic
attractor. (d) A chase portrait of the chaotic spin sequence of (c).

We did find chaotic metastable structures for the ANNNI problem, but only by relaxing
nonchaotic attractors. Two different kinds of chaotic structure are shown in figure 7.



Study of the ANNNI model using a dissipative map 5337

In (a) and (b) we show a ‘strong’ chaotic structure—that is, one characterized by a
highly irregular phase portrait in the(Mi, Mi−1) phase space (not to be confused with
the (T /J0, κ) parameterspace in which we view phasediagrams). The mapping gave an
incommensurate chain—i.e., one whose phase portrait is a smooth, closed curve—when run
at (−g2/g1 = 0.75, gT /g0 = 2.35); when we relaxed this chain (at(κ = 0.75, T /J0 = 4.7),
using our standard prescription), the smooth phase trajectory broke up as shown in figure
7(b): a chaotic structure was obtained. We have relaxed chains of 500 spins and higher, to
verify that the structure we found was not simply an artifact of edge effects.

Obviously, this result represents a case for which the attractor and the nearest local
minimum ofF are (although not differing greatly in the overall phase portrait)qualitatively
different—in contrast to the previous examples described above. There is in fact an entire
region of the phase diagram (figure 1) in which this is commonly true. This region extends
roughly from the solid line in figure 1 to the paramagnetic phase; it also (again, roughly)
coincides with that region in the true phase diagram which is dominated by an infinity
of incommensurate stable phases—most of which must have extremely small regions of
stability (or metastability). Presumably, this is a partial explanation for the general failure
of the map to find metastable structures in this region.

Another kind of chaotic state at (0.21, 5.4) is shown in figures 7(c) and 7(d). Here the
(‘weak’) chaos is more readily seen as a set of irregularly spaced defects in an underlying
regular (ferromagnetic) structure; and the phase portrait of figure 7(d) is deceptively smooth,
in contrast with that of figure 7(b). The structure shown was relaxed from a paramagnetic
chain [15] at (κ, T /J0) = (0.21, 5.4), which is near the true Lifshitz point—but in the
ferromagnetic region—of the equilibrium phase diagram.

The soliton (domain wall) density is clearly not small in figure 7(c), but the structure
shown is nevertheless metastable. As we show in the next section, there are in most parts
of the phase diagram an infinite number (more precisely, a number growing exponentially
with the lengthN of the spin chain) of such metastable states. Essentially all of these
metastable states are disordered, and yet, as we have seen, the attractors of our dissipative
mapMd are invariably periodic or quasiperiodic—and they almost always ‘point’ to (are
close to) a periodic or quasiperiodic metastable state.

4. Metastable states

In the previous section we have described in some detail the attractors of our mapMd , and
attempted to relate these attractors to metastable states of the mean-field ANNNI model.
In order to put these results in context, it is of interest to study the set of metastable (MS)
states for this problem—specifically, the numberP of metastable states, and the densityρ

of such states as a function of the free energy per spinf . In this section, we report some
results forP and forρ(f ) for the ANNNI problem.

The simplest case is that whereT > Tc. Here there are no metastable states other than
the PM phase. The proof is as follows.

A state {Mi} is a local minimum ofF if and only if ∂F/∂Mi = 0 and the Hessian
matrix Hij = ∂2F/∂Mi ∂Mj is positive definite. Using (2.1), one finds

Hi,i = −4 + T

1 − M2
i

Hi,i±1 = 1 Hi,i±2 = −κ (4.1)

and the condition∂F/∂Mi = 0 becomes

Mi + αi = T

8
ln

1 + Mi

1 − Mi

(4.2)
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where αi ≡ 1
4(Mi−1 + Mi+1) − (κ/4)(Mi−2 + Mi+2) (and we again takeJ0 = J1 = 1

throughout this section). Since only the diagonal elements of the Hessian depend on the
{Mi}, such thatHii has an absolute minimum atMi = 0, we conclude that, if{Hij } is
positive definite for the PM phase whenMi = 0, then{Hij } is positive definite forany
other set of spins{Mi}, at the sameT . But a function with the Hessian matrix positive
definite everywhere cannot have more than one extremum. This means that, forT > Tc,
there are no metastable states other than the PM phase.

For T < Tc the number of metastable statesP will depend on the total number of spins
N . We assume an exponential dependence

P(T , κ, N) = A(T , κ)aN(T , κ). (4.3)

In most cases we will restrict our consideration to findinga.
First, we consider the case whereT = 0, when (2.1) reduces to

F({Mi}, T = 0) = −2
∑

i

M2
i − 1

2

∑
i

Mi((Mi+1 + Mi−1) − κ(Mi+2 + Mi−2)). (4.4)

To find local minima we will also need the dependence ofF(T = 0) on the single spinMi ,
which is given by

F0(Mi) = 2(−M2
i − 2αiMi) (4.5)

whereαi does not depend onMi . Obviously,F0, viewed as a function of the single variable
Mi , is an inverted parabola, which achieves its local minima only at the boundaries, i.e. when
Mi = ±1. This, in turn, means that the problem of finding minima ofF({Mi}, T = 0)

reduces to a selfconsistency problem for the{αi}. That is, {Mi} is a local minimum of
the free energyF({Mi}), if and only if, for any i, F0(Mi) (given by (4.5)) is at a local
minimum. Minima ofF0(Mi) occur at: (i)Mi = ±1, if |αi | < 1; (ii) Mi = +1, if αi > 1;
(iii) Mi = −1, if αi 6 −1. Requiring selfconsistency of these conditions then gives us the
following criteria for metastable states atT = 0.

(1) 0 < κ < 1, any sequence of±1 is metastable. The total number of metastable states
is, obviously, 2N .

(2) 1 < κ < 2, any sequence of layers which doesnot have ‘111’ in its Zhdanov
representation [14] is metastable.

(3) 2 < κ < 3, ‘111’ and ‘n1’, wheren > 3, are prohibited.
(4) κ > 3, ‘111’, ‘n1’, n > 3, and ‘5’ and greater are prohibited.

Given this set of rules, one can find the total numberP of metastable states. One way
to do this is to calculate numerically

a = exp

(
lim

N→∞
ln P(N, 0, κ)

N

)
. (4.6)

Alternatively, one can write a finite-difference equation forP (see below) which, when
solved, yieldsa.

When T > 0, the coupled equations∂F/∂Mi = 0 cannot be solved analytically, but
while |Mi | is close to unity, one can use an approximate (perturbative) approach. If we
suppose, for alli, that Mi ≈ M0

i , thenαi ≈ α0
i (where the superscript 0 denotes the value

of the variable atT = 0), and (4.2) becomes

M0
i + α0

i ≈ T

8
M0

i ln
2

1 − |Mi | . (4.7)
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Here we have ignored terms of orderδi = |M0
i − Mi | = 1 − |Mi |. This gives

Mi ≈ M0
i

[
1 − 2 exp(−8(1 + M0

i α0
i )/T )

]
(4.8)

or δi = 2 exp(−8(1 + M0
i α0

i )/T ): that is, the mean-field layer magnetizations approach
unity in magnitude very fast asT → 0, as long asM0

i α0
i > −1. But for states which are

metastable atT = 0 (see our criteria (i)–(iii) above),M0
i α0

i always exceeds−1, and so any
metastableT = 0 state, continued to finiteT using (4.8), represents a possible solution of
(4.2) at finiteT . If we consider the nonconstant (diagonal) elements of the Hessian matrix,
which for low T are given by

Hii = −4 + T

4
exp(8(1 + M0

i α0
i )/T ) (4.9)

we see that limT →0 Hii = +∞, so Hii is large and positive for some range ofT > 0.
Hence we conclude that a state metastable atT = 0 remains metastable over some finite
range ofT .

To estimate the temperature where the state disappears, we will use the following trick.
A simple graphical analysis of (4.2) (i.e., LHS≡ fL(Mi) = fR(Mi) ≡ RHS) shows that
three solutions (one unstable) become one solution, with increasingT , and that the lost MS
state has (for at least one spini) Miαi < 0. Assuming that, until a state disappears in this
way, αi ≈ α0

i for this spin, one gets

Mi + α0
i = T

8
ln

1 + Mi

1 − Mi

. (4.10)

Solutions of this equation will lose (meta)stability when

∂fR(Mi)

∂Mi

= T

4(1 − M2
i )

= +1

while simultaneously satisfying (4.10) andMiαi < 0. These three conditions give an
implicit equation for the temperatureT at which a state disappears, which is

α0
i = T

8
ln

T

4
− T

4
ln

[
1 +

(
1 − T

4

)1/2
]

+
(

1 − T

4

)1/2
≡ f (T ). (4.11)

However, there are only a few combinations of Zhdanov symbols for whichMiαi < 0,
namely:

‘111’ disappears at12 + κ/2 = f (T )

‘11’ disappears at12 = f (T )

‘1’ disappears at12 − κ/2 = f (T ) (κ < 1)
‘n1’ (n > 3) disappears atκ/2 = f (T )

‘n’ (n > 5) disappears atκ/2 − 1
2 = f (T ) (κ > 1).

Using these relations, approximate boundaries where solutions containing these Zhdanov
symbols disappear are shown in figure 8. We note that the last stability boundary listed
above (i.e., that for all Zhdanov sequences including any symboln > 5) should coincide
with the stability boundary for the FM phase. We see from the figure that our approximation
(|Mi | ∼ 1) is quite good belowT/J0 ≈ 2.

From the above, we can see that, even at finite (low) temperatures, the problem
of counting metastable states reduces to the pure combinatoric problem of counting all
possible combinations of allowed Zhdanov symbols. The last problem can be solved
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Figure 8. Approximate regions in the(κ, T ) phase diagram for which we have counted the
metastable states for the mean-field ANNNI problem. The leading exponential dependence of
the numberP of MS states is shown in each region. Lines with small circles represent the exact
boundaries ofmetastability for the PM, FM, and〈2〉 phases, as indicated. The thin solid lines
are obtained in the small-δ approximation, whereδi = 1 − |Mi |. The bold lines are obtained
using a small-κ approximation (see the text).

either numerically, by calculating (4.6), or analytically. For instance, the numberP1(N) of
sequences ofN spins which donot have ‘1’ in their Zhdanov representation satisfies

P1(N + 1) = P1(N) + P1(N − 1).

AssumingP1(N) = AaN , one immediately gets the equation fora: a = 1 + 1/a which
corresponds toa = 1.62. In a similar fashion one can consider the other cases; the results
are also presented in figure 8.

Another region where we were able to find (at least numerically) more or less clear-cut
boundaries is the region of smallκ (κ 6 0.15). The reason for existence of the clear-cut
boundaries in this region is that the interaction between spins is effectively restricted to the
interaction between nearest neighbours. Therefore, spins in a given domain (where a domain
is a sequence of spins between two successive changes of spin sign, that is, each Zhdanov
symbol represents a domain) only ‘feel’ the domain boundaries—more specifically, the
change of sign at the domain boundaries. This leads to the conclusion that for any given
n, domains of lengthn will become unstable almost at the sameT , for any MS state
containing such domains. This conclusion was checked numerically in the following way.
(1) A finite spin sequence (from 150–250 spins) of the form (Zhdanov sequence) ‘LnL’,
whereL � n, was constructed atT = 0. This structure was then ‘tracked’ with increasingT



Study of the ANNNI model using a dissipative map 5341

Figure 9. The distribution of metastable states in intensive free energyf , for several regions
of figure 8. The energy of the FM state found by the mapMd is indicated by a small vertical
arrow. Also, since some bars in the histogram are too small to see, every energy for which the
number of MS states is nonzero is indicated by a ‘×’ on the abscissa.

by repeated relaxation after successive small incrementsδT (each time using the previously
relaxed structure as the start state for the relaxation), until then-domain disappeared at
someT (1)

n . (2) The same procedure was used, starting however with (a finite section of) the
periodic structure〈n〉 at T = 0; again the temperature was raised in small increments, each
time relaxing the previous structure, until〈n〉 became unstable and changed to some other
structure atT (2)

n . Usually this other structure still contained some domains of lengthn; hence
the relaxation process was continued, with increasingT , until finally all domains of length
n disappeared at someT (3)

n . We did this numeric experiment forn = 2–6, and the result
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(for κ small) was always the same:T (1)
n 6 T (2)

n 6 T (3)
n , with |T (1)

n − T (3)
n | � T (3)

n . Hence
we can define some average temperatureTn = (T (1)

n + T (3)
n )/2, and use this temperature

as a good estimate of the point where domains of lengthn disappear. Repeating these
calculations for differentκ, we get the dependenciesTn(κ). These dependencies are shown
as bold lines on figure 8.

Another important question is the energy distribution of MS states. We did not attempt
the general problem of finding the density of MS statesρ(f ); instead we restricted our
consideration to the simpler case of low temperature (or more precisely, smallδi : |Mi | ∼ 1),
where one can use the selection rules and perturbative expressions obtained above. We have
used a simple approach: we exhaustively list all states which are allowed by the selection
rules for a finite chain of fixed length, and plot the distribution of resulting intensive free
energies. Our calculations show that the distribution obtained in this way is usually well-
converged if our finite chain includes 20–25 spins. Figure 9 shows the distribution of MS
states at a singleκ = 0.8, for the four temperaturesT = 0, 0.5, 1.2, 1.5, which correspond
to four different regions of figure 8. To show the total range in energy, we have also marked
the abscissa wherever the density of MS states is nonzero.

Watson and Canright [8] found that the mapMd , applied to the flux-line problem,
performed well in terms of locating low-energy MS states as attractors. In particular, the
mapping was most successful where the problem (which had a tunable frustration) was
highly frustrated, with a relatively large number of MS states. In figure 9 we show the
corresponding performance of the current version ofMd , applied to the ANNNI problem.
Here we see the fact that the map possesses few attractors (essentially one) reflected in
its relatively poor ability to single out low-energy MS states. For the indicated parameter
values, the attractor is always ferromagnetic, while the equilibrium state (of minimalf ) is
the 〈2〉 phase. Of course, forκ > 1 Md will give the lowest-energy structure. However,
figure 9 makes the qualitative point that the relative inflexibility ofMd for this problem
hampers its ability to find successfully low-energy metastable states.

5. Summary

In the present work we apply an idea of Watson and Canright [8], by writing a dissipative
map Md for the mean-field ANNNI problem which involves repeated minimization of
a fictitious, asymmetric energy function. In contrast to the case studied by Watson and
Canright, our problem gives a dissipative map whose dimension is fixed at two—i.e., at
the (fixed) interaction range of the ANNNI problem. One (apparent) consequence of this
simplification is that the mapMd possesses, in general, a single attractor (plus its spin-
inverse) for a given set of parameters. Nevertheless, as shown in part in the figures, the
map Md displays a rich variety of attractors over the parameter space. These include
ferromagnetic, paramagnetic, commensurate, and unpinned incommensurate structures, as
well as pinned soliton lattices. Furthermore, the ‘attractor phase diagram’ (easily defined
since there is essentially a single attractor for each parameter set) shows a remarkable
qualitative similarity to the true phase diagram of the equilibrium problem. Hence our study
adds to the growing body of evidence that nonlinear dynamical systems can present time-
dependent behaviours with strong similarity to those static, spatially dependent structures
exhibited by equilibrium systems.

If we further demand of our map that it reliably point to metastable structures of the
corresponding equilibrium problem, we find somewhat mixed results. Over most of the
phase diagram, the map succeeds in doing so. By ‘most’ we mean, at least roughly,
wherever incommensurate phases are absent. It is not that the map cannot find metastable
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incommensurate structures; it is rather that, in the region of the phase diagram in which
such structures are prevalent, the map, more often than not, fails to find any qualitatively
correct metastable structure. Of course, it is just in this region that the minima of the true
free energyF are expected to be relatively weak, and to only exist over small regions of
the phase diagram.

Somewhat surprisingly, the two-dimensional mapMd for the ANNNI problem
apparently has no chaotic attractors anywhere in parameter space. There are good physical
reasons to expect such structures for the mean-field ANNNI problem, and strong hints from
earlier studies with a volume-preserving map that they should exist. We did find some
(finite-size) examples of chaotic metastable structures, but only in the course of relaxing
nonchaotic structures, generated byMd , to the nearest local minimum of the free energyF .

We believe that these glassy structures merit further study; they are in fact theonly
metastable structures of the ANNNI problem which have not yet yielded to systematic
study. It seems however that the dissipative map idea, which was quite successful in
finding chaotic states in the case studied by Watson and Canright, will not be useful here.
We have here presented some limited results for the number and density (in free energy)
of these disordered metastable states. We find an uncountable infinity of such states, in the
limit N → ∞, over the parts of the phase diagram studied (excluding of course the PM
phase). Of this enormous variety of metastable states, it is somewhat remarkable that the
dissipative map invariably finds the ordered (periodic or quasiperiodic) ones.

Finally, we note that the idea studied here still awaits a level of understanding which
goes beyond numerical experiments. The present application represents a considerable
simplification over the high-dimensional version ofMd studied by Watson and Canright.
With this simplification, we have been able to obtain some limited analytical results for
the dynamic critical behaviour of the map. However, we believe that further work is
needed towards the goal of better understanding the behaviour and properties of this kind
of dissipative dynamical system. One possible further simplification, which may merit
investigation, is to make the map one-dimensional—which can still yield frustration, and
hence complex behaviour, through the addition of an external potential (an example [2] is
the Frenkel–Kontorova problem, which has an interaction ranger = 1).
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